Human primitive hematopoietic progenitor cells are more enriched in KITlow cells than in KIThigh cells.

نویسندگان

  • Y Gunji
  • M Nakamura
  • H Osawa
  • K Nagayoshi
  • H Nakauchi
  • Y Miura
  • M Yanagisawa
  • T Suda
چکیده

To clarify the phenotypes of various classes of human hematopoietic progenitor cells, we used a multicolor staining protocol in conjunction with CD34 and a newly developed mouse antihuman c-kit proto-oncogene product (KIT) monoclonal antibody (MoAb). We characterized three cell fractions in CD34+ cells that express KITlow and KIThigh cells in addition to KIT- cells. A clonogenic assay showed that most granulocyte-macrophage colony-forming cells (GM-CFC) were present in CD34+KIThigh populations, whereas erythroid burst-forming cells (BFU-E) were detected mainly in the CD34+KITlow population. CD34(+)-KIT- fraction contained a small number of BFU-E. Morphologic analysis showed that blast-like cells were more enriched in the CD34+KITlow fraction. KITlow cells contained CD34+CD38- cells that were considered to be very primitive progenitor cells, as determined by a replating assay. To clarify the biologic differences between both fractions, we examined the more primitive progenitor cell functions by assessing long-term culture-initiating cells (LTC-IC) on the stromal cells. At week 2, more CFC recovered from the culture in the fraction initiated with a CD34+KIThigh population. However, more LTC-IC were present during weeks 5 to 9 in the CD34+KITlow population. These results indicate that primitive progenitors are more enriched in the KITlow population and that the KIThigh population contains many GM-committed progenitor cells. We also showed that anti-KIT MoAb inhibited the ability of CD34+ cells to generate CFC on the stromal layer in the LTC system. This suppressive effect was more evident in the generation of BFU-E by CD34+KITlow cells. Moreover, we confirmed that CD34+KIThigh cells emerged from CD34+KITlow cells during coculture with allogeneic stromal cells or from liquid culture in the presence of stem cell factor (SCF), interleukin-6, and erythropoietin. These results emphasize the pivotal role of the KIT and SCF interaction in hematopoiesis and indicate that KITlow cells are more primitive than KIThigh cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells

Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...

متن کامل

Isolation and characterization of murine clonogenic osteoclast progenitors by cell surface phenotype analysis.

Osteoclasts are bone resorbing cells of hematopoietic origin; however, a progenitor cell population that gives rise to mature osteoclasts remains elusive. We have characterized a unique cell surface phenotype of clonogenic osteoclast progenitors (colony-forming unit-osteoclast [CFU-O]) and obtained a marrow cell population selectively enriched for these progenitors. Whole bone marrow cells were...

متن کامل

EXPANSION OF HUMAN CORD BLOOD PRIMITIVE PROGENITORS IN SERUM-FREE MEDIA USING HUMAN BONE MARROW MESENCHYMAL STEM CELLS

Ex vivo expansion of human umbilical cord blood cells (HUCBC) is explored by several investigators to enhance the repopulating potential of HUCBC. The proliferation and expansion of human hematopoietic stem cells (HSC) in ex vivo culture was examined with the goal of generating a suitable clinical protocol for expanding HSC for patient transplantation. Using primary human mesenchymal stem ...

متن کامل

Specification of Hemato-Endothelial-Like Structures and Generation of Hematopoietic Progenitor Cells from Human Pluripotent Stem Cells

 Background and purpose: Human pluripotent stem cells (hPSCs) with the ability to differentiate into adult cells have provided a new perspective for treatment of some diseases. But, the efficiency of differentiation methods to generate hematopoietic progenitor cells (HPCs) is faced with multiple challenges. In the present study, we investigated the formation of hemato-endothelial-like structure...

متن کامل

سلول‌های بنیادی طبیعی و سرطانی خونی: داروها و سمیّت

Stem cells occur in many somatic tissues of multicellular organism and are important participants in their physiology. Stem cells have three distinctive properties: 1- self-renewal, 2- the potential to proliferate extensively and 3- capability to develop into multiple lineages. Every time a stem cell divides, it makes one exact copy and one progenitor cell. Progenitor cells have finite division...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 82 11  شماره 

صفحات  -

تاریخ انتشار 1993